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I. Affine Transformations and Tracking.

When a dynamic three-dimensional scene is observed via an

optical projection, a quite complex class of motions are induced

in the image plane [5,6,7,9]. In general, this class of motions

is highly non-linear, being dependent on the geometry of the

objects being observed as well as their trajectories in space[3].

Nevertheless, in many cases the motion is approximated closely

by tran.slation, magnification and rotation in the image plane.

It is easy to see that this approximation is best for motion in

space which consists of translation and rotation about a line

parallel to the bare sight.

A better approximation results by consideration of the full

affine group in the plane, which includes shearing in two direct-

ions as well as the motions mentioned above. By definition, an

affine transformation in the plane R2 is of the form

T(y) = Ay + a, yeR 2  (1.1)

where A is a non-singular 2x2 matrix and aER 2 is considered as a

column vector [4,10]. The set of all such transformations T is

called the general affine group and is denoted GA(2). It is

easily seen that the subset consisting of translations, magni-

fications and rotations forms a subgroup, which we denote by

SA(2). In order that T(y) = Ay + a belong to SA(2) it is nec-

essary and sufficient that A11 = A22 and A12 = -A21* In this

221/2
case, the magnification factor is (A 1 + A21 ) / and the rotation

angle is atn(A 2 1/A11 ).

In order to consider dynamic images, it is necessary to allow
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A and a in (1.1) to depend on time. This gives rise to a tra-

jectory u(t,y) for each y R2 given by

u(t,y) = A(t)y + a(t) (1.2)

where (A(t), a(t)) E GA(2), and we require that A(O)=I, a(O)= 0

in order that the trajectory pass through - at time t=0; i.e.,

u(0,y) = y.

As in (4], though only for linear transformations, we may

realize the pair (A(t), a(t)) as the solution of a linear system

of differential equations. Let us define

A(t) = A(t) A (t) (l.3a)

X(t) = a(t) - A(t) a(t), (l.3b)

from which,

A(t) = A(t) A(t), A(0) = I (l.4a)

a(t) = A(t) + A(t) a(t), a(O) 0 (l.4b)

We may summarize the correspondences defined by (1.3) and (1.4)

as follows:

Theorem 1.1: Equations (1.3) and (1.4) establish a one-to-one

correspondence between differentiable curves (A(t) , a(t)) in
GA(2) satisfying AC0) = I, a(O) = 0 and continuous curves

2
(A(t), X(t)) where Ait) is an arbitrary 2x2 matrix and \(t) ER

Moreover, in order that (A,a) belong to SA(2) it is necessary

and sufficient that All = A22 and A12 = -A21.

The first part of the above theorem apparent from (1.3) and

(1.4). A rigorous and detailed proof proceeds exactly as given

in [4] for linear transformations. The last part can be deduced

by a few calculations using the fact that elements of SA(2) satisfy

A11 M A22 and A1 2 = 21'
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Now, if we differentiate (1.2) with respect to t, use (1.4)

and (1.2) again, we obtain

-- (ty) = A(t) u(t,y) + \(t). (1.5)3u

Of course, v(t,y) = -- (t,y) is the velocity field along the

trajectory u(t,y). Equ. (1.5) shows that the velocity at a point

u depends on u as well as t and is therefore not spatially in-

variant.

Note that (1.5) in fact gives the differential equation for

an arbitrary affine trajectory, and when A(t) is restricted as

in Theorem 1.1, it gives the equation for a trajectory under the

restricted group of motions SA(2). By virtue of (1.2), we see

that (A(t), a(t)) obtained from (1.4) may be considered as a

fundamental system of solutions to the evolution equation (1.5).

Now it is important to note that the fundamental system of solu-

tions is completely determined by the pair (A(t), X(t)) which

is spatially invariant, being a function of time only. To es-

tablish convenient terminology, let us give the following

Definition 1.1: The pair (A(t), \(t)) is the generalized velocity

field of the family of affine trajectories u(t,y) defined by (1.5).

We may now state

Theorem 1.2: A family u(t,y) of affine trajectories satisfying

u(O,y) = y is completely determined from its generalized velocity

field, which is spatially invariant, via (1.4) and (1.2). More-

over, the absolute velocity v at a point u on a trajectory is

given, as in (1.5) , by v = A(t)u + N(t)

Let us write A t) l~4 3 and expand the equa-
21\ 4 \ 6_
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tion u = A u + X (where the t-dependence has been suppressed) in

the form

+ 36L4] (1.6)

In this way we can identify individual vector fields v (u),...,

66

v 6(u) and write (1.6) in the form

au 6 v

-- Xi (t) V (u) (1.7)

In a similar manner for SA(2), we write

A and A = x |12 14 X3

so that

01 4 u

2  + X2['] + ,3[u 2 l +, 1I ,(.

allowing four vector fields v (u),..., v 4(u) to be indentified.

Finally, we rewrite (1.8) as

- xi(t) v (u) (1.9)
i=1

It should be noted that the functions vi defined by (1.7) or

(1.9) are characteristic of the class of motions under consider-

ation, and more general classes of motion can be treated by

1 2 ...consideration of other generators v , v , In the cases of
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interest, the sets of vector fields derived above define the Lie

algebras (21 of GA(2) and SA(2) . Any vector field v: R -R induces a

differential operator Yv' called an infinitesimal transformation,

which is defined by

Y v lv (Y) --- + v2(Y) ( 0

1 Yy12-- 2 (1.10)

where v1 (y) and v2 (y) are the components of v(y). In Tables

1 and 2 we list the infinitesimal transformations for the groups

GA(2) and SA(2), given in terms of a variable x=(xlfx 2) for later

application

Table 1. Infinitesimal transformations for GA(2).

1 - 3 = x X5  x 2 x

x 3 a
2 3X24 1 x2 6  X 2 3x 2

Table 2. Infinitesimal transformations for SA(2)

333X x x1 1 3 1 3 x 1 -23x 2X I 3 X 3~ =x" lx 2+x 2

*2 -3x 2  4 1 x I x x2 x

Note that u(t,y) given by (1.2) may be regarded as the lo-

cation at time t of the particle which was at y at time t=0.

An observar at some point x will observe this particle provided

that x = u(t,y) = A(t)y + A(t) . We may solve this equation for
-i

y to obtain y = A (t) (x - a(t)). Thus we define the trace of

the point x z R2 to be
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(t -l 2

s(t,x) A A-l(t) (x-a(t)), xER 2
. (1.11

We may interpret s(t,x) to be the particle which will arrive at

x at time t.

Let us now consider a two-dimensional image, represented by

a function f:R2_ R, and suppose that the image f is subjected to

an affine transformation (A(t), a(t)). Here a value f(y) is re-

garded as a feature which propogates along the trajectories of

the motion. This is an extremely powerful, and somewhat re-

strictive, assumption which is not always valid in real images.

For example, it is violated by changes in radiance values which

vary as a function of the angle of incident illumination. On

the other hand, it is valid in most instances over short time

intervals and deviations from this assumption may frequently be

treated as higher order effects.

In any event, if the feature f(y) is propagated along tra-

jectories, then a stationary 3bservor, say at point x, will ob-

serve a value F(t,x) = f(s(t,x)) at time t, since s(t,x) re-

presents the particle arriving at x at time t. We may now state

a most important result.

Theorem 1.3: Let a time-varying image F be given by

F(t,x) = f(s(t,x)) (1.12)

where s(t,x) is an affine trace as in (1.11) with generalized

velocities

k(t) = .(t) = 3 5] Then2 ' 4 6
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6--"I =\i(t) X i  F ,(1.13)
i=l

where X! ,...,X 6 are given in Table L.

A similar result holds if we restrict to SA(2), using

X1 .... X4 from Table 2.

Proof: This result may be deduced from results given in

[7], provided we compensate for the change from "left invariance ';

in that development to the "right invariance" of the current

treatment. However, a direct proof is instructional and will

be outlined herein. We first show

Lemma 1.3.1: For s(t,x) given by (1.11)

6 x ,i (t)X iS. (1.14)

Proof: First note that by direct calculation we have ),kiXi S=

\iXiA (x-a) = A iXix ) =  ( (x)) = A (Ax+\). Also,

d A 1  _-IA-I 3s_ A-l
noting that -d- - , we have -t -t A (x-a)

-A IAA- (x-a)-A-la -A- A(x-a) - A- (X + Aa) =-A-l(Ax + \).

Hence, the desired result follows.

Returning to the proof of Theorem 1.3, we have

x iXF(tx) = x X.(t)vj(x) ---f(s(t,x))
i l 3

skf

= ( \ Ct) v I(x) (t,x) v (s)

tI

9/

x - 7-sO
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SR 3Sk (S)

3 Sk .f ;f(s(t,x))
t (t,x) s k (s) 2t

3F- - (t,x) , as desired.

Theorem 1.3 appears to be fundamental to the analysis of

motion in dynamic images. As is evident from the proof, an

analogue is valid in a much more general setting. In fact,

scrutiny of the proof shows that it depends mainly on Lemma 1.3.1.

Consequently, the theorem will hold f.)r any class of motions for

which a suitable form of the "trace" lemma can be obtained. The

,ignjficance of Theorem 1.3 lies chiefly in the fact that the

generalized velocities (which are usually unknown) appear as

linear coefficients in (1.13), along with quantities which can

be calculated from the data F(t,x).

The main problem with the extraction of the generalized

velocities from (1.13) is the general lack of numerical pre-

cision in the calculation of the derivatives from real data

(e.g., digitized video). In subsequent sections we shall show

how to incorporate (1.13) in a feedback loop which is very stable

and how to obtain an equivalent formulation based on integration

rather than differentiation.
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II. A Velocity Feedback Tracker

The theoretical results of this section result from research

done under a separate contract and for which a publication is

in preparation. In view of the fact that the techniques have

been incorporated in the experimental portion of this report,

these results will be presented in this report in the context

of affine transformations.

Let absolute image coordinates be denoted by y = (y1 ,Y2 )

and introduce additional coordinates as follow: Let coordinates

z be established relative to a moving target, and let coordinates

x be established in a movable "window". We assume that the

motions of both the target and the window may be described by

affine transformations relative to absolute image coordinates.

It is assumed that the motion of the window may be chosen at

will, while the motion of the target is prescribed (e.g. by

nature) and is unknown.

By the affine assumption, we may describe the transformation

from window coordinates to image coordinates by

2Yw(tx) = A(t)x + a(t) , x Rw , (2.1)

where (A(t) , a(t)) is a suitable family of affine transformations.

Similarly, the transformation from target coordinates to image

coordinates is

yT(t,z) = B(t) z +b(t) , zE R (2.2)T T

for suitable (B(t) , b(t)) E GA(2). Let us denote the respective

generalized velocity fields by (AA, XA) and (AB , kB).

By equating YT(ttz) = Yw(t,x) we may solve for the point z

* ONR Contract N0014-76-C-1136
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on the target which arrives at point x in the window at time t,

to obtain:

z(tx) = BI (Ax + a - b), (2.3)

where dependence on t has been suppressed on the right. We note

that z(t,x) in (2.3) may be regarded as a trace in the sense

of the previous section. By an application of Lemma 2.3.1 we

have:

Theorem 2.1: There exists a generalized velocity field (T(t),y(t))

such that 6
3z(t,x) =- -- >i(t) Xiz(t,x) , (2.4)
3t i=l

where Y(t) ], and the operators X1 ,... ,X6 are

given in window coordinates as in Table 1.

Now, let f(z) be a feature of the target, measured at point

z, and assume that this feature propogates along the target

trojectories. An observor at point x in the window therefore

observes data F(t,x) = f(z(t,x)), inasmuch as z(t,x) is the point

which arrives at x at time t. From Theorem 1.3 we obtain

Theorem 2.2: In the above context,

- 3F 6
F (t,x) - y (t)XiF(t,x) (2.5)

In principle, (2.5) allows the determination of the general-

ized velocities of the target relative to the window. Since

we have free choice of window velocities, relative to the image

coordinates, this is tantamount to measurement of absolute target
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velocities. The conversion process will now be described.

Let us denote by X the window space, Y the image space, and

let T(X) and T(Y) be the respective tangent spaces. Since the map

from X to Y is y = A x + a, as in (2.1), it follows that the in-

duced map on the tangent spaces is simply y = A x [1,2].

Now the velocity field (r, f) defines a map X - T(X) given by

x 71 x + y (see (1.5)). Accordingly, a velocity field (7, X)

is induced on 7, which maps Y - T (Y) in a similar fashion. The

velc~city field (A, X) is defined by the commutative diagram

(A,aI A

Y_ T(Y).

Thus, we calculate y = A y + X, by inverting (A,a) and taking
* A-l AI-ly

the upper path, to be given by y = A(I A (y-a)+y) = AfA y +

Ay-AFA- a. By comparison, we obtain

A = AFA 1  (2.6a)

A = Ay-AAI a (2.6b)

Now, since the velocity field (P,y) represents the difference be-

tween target and window velocities in the window coordinate system.

we see that (A,X) must represent this same difference relative to

the absolute image coordinate system. That is,

A = A B -A A (2.7a,

X = B  -xA (2.7b)

B A
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we may summarize these results in a useable form as follows:

Theorem 2.3: Let (2.1) and (2.2) define the motion of a window

and a target, respectively, relative to a system of absolute image

coordinates, and let (AA' 'A) and (AB, IB ) be the corresponding

generalized velocities. Further, let (f,y) be the generalized

velocities of the target relative to the window, as determined by

(2.5).

Then

AB - AA = ADA1  (2.8a)

XB - XA = Ay-APA-1a. (2.8b)

The previous theorem immediately suggests an algorithm for

determination of velocities in an image. More generally, the

algorithm performs tracking since, as will be seen, the result is

to force the window to follow the target by emulation of velocities.

The algorithm is as follows:

Step 1. Initialize the window by choice of A(N), a(O). In the
absence of a priori information, initialize AA (0)=0, A (0)=0.

Sample window values F(t0 ,x) at time t0=0.

Step 2. Sample window values F(t ,X) at time t n=tnl +6. Appro-

ximnate LE and X. F at various points in the window and form a
3t 1

system of linear equations using (2.5).

Step 3. Solve the resulting linear equations for ;Y2'...

Step 4. Replace A AAA + ATA -  and XA+XA + Ay - AFA-1a.

Note: If the calculation of y 1Y2,-. were exact, this

would result in A,4A (tn) and "kA B(tn)

Step 5. Take a S time step in the numerical solution A = A A,

a= A + AAa to obtain (A(t n), a (t n)). This effectively moves
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the window.

Step 6. Repeat from step 2.

Emperical results indicate that the above algorithm conveys

rapidly over a fairly broad range of target velocities. Although

the initial estimate of target velocities is usually fairly coarse,

it is generally in the right direction and results in good estimates

after 3 to 5 iterations. Subsequently, the target is tracked

very well with only a nominal amount of slew. More importantly,

the computational speed is such that it is feasible for real-time

implementation, with calculations having been done at 25 to 100

iterations per second on various computers, including time spent

in simulation support.

The most notable failure is a high degree of instability en-

countered in dealing with real data in the form of digitized

images. The available image data, however, did not have a suit-

able dynamic range in comparison to the noise level. Considerable

improvement resulted by expanding the contract and filtering to

obtain a greater dynamic range.

The results of performing the above algorithm on simulated

data is presented in appendix A.
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III. Alternate Formulation via 2 - forms.

The major source of error in the calculation of generalized

velocities woula appear to be that introduced in the numerical

approximation of spatial derivatives. Although the situation is

improved somewhat by filtering and the use of multi-point formulas,

it is still desirable to seek alternate approaches. As can be

seen from examination of the algorithm of the preceeding section,

any method for calculation of generalized velocities may easily

be inserted in the basic tracker.

In this section we appeal to a form of Stoke's Theorem (1]

to obtain an integration based analogue of Theorem 1.3. The

formula obtained is strictly valid only when the generalized

velocities are constant, although is is a useful approximation

when the rates of change of the velocities are small.

We consider the three dimensional space R3 consisting of

time t and two spatial variables x and y. Coordinates =(t,x,y)

are chosen to make a right-hand coordinate system, and we observe

this orientation in defining differential forms. We state the

form of Stoke's Theorem required:

Stoke's Theorem: Let s be a rectangle in (t,x,y) space R3 and

let w be a differentiable 2-form. Then

fw = fdw (3.1)

Here w is of the form w = a0dxdy + a,dydt + a 2dtdx, with

3
OL' aL' L2' differentiable functions of cR , and

a0 a1 32dw - + + -y dtdxdy.
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Although the results to be presented may be generalized con-

siderably, our derivation and experimental results will be given

only for SA(2). Thus, the appropriate vector fields and corres-

ponding infinitesimal transformations may be obtained from (1.8),

(1.10) and Table 2, with x and y substituted in the obvious manne:.

By analogy with (1.9), for a constant velocity field

X = (X1, X2 , X, X 4 ), let us define a vector valued map

7: R 4xR 2R2 by 4 1i +- 3 3x X4

7(Z) = Xi. ( ) [ V ]Uy  (3.2)i=l l 2 + 14x + X 3y

As usual, let 7 1, 2 denote the components of'

Now, if s(t, ) is the trace corresponding to the generalized

velocity field X and F(t, ) = f(s(t,j)) is observed data, we may

express Equ. (1.13) of Theorem 1.3 as

-~~ IF F + - 3F
3 F r t (_F + _F3.3)
at 1 3x 2 Ty

We intend to apply Stoke's Theorem to the 2-form defined by

w= F dxdy + 1F dydt + '2F dtdx (3.4)

The principal result is stated as

Theorem 3.1: In the context above,

= 2 3F dtdxdy (3.5)

To establish this, we calculate dw, using the fact that

dxdydt = dydtdx = dtdydx (whereas, for example, observing orienta-

tion, dtdydt = -dtdxdy) . We have



16

d+ L- + F + + F 2 dtdxdy. By

application of (3.3) and then (3.2) this simplifies to dw =

(F - + F - dtdxdy = 2X3 F dtdxdy, as desired.

By an application of Stoke's Theorem, and a somewhat tedious

calculation, we immediately obtain:

Theorem (3.2). Let Q be a rectangle in R3 defined by opposing

corners (tl , x1 , y2. In the context described above, in part-

icular with X constant, we have

4
X ik i =k 0  (3.6)

where k0 , kI ,..., k4 are given in Table 3.

Table 3. Coefficients resulting from Stoke's Theorem.

k0 = - f F dxdy

kI = f F dydt

k 2 = fF dtdx

k3 = f xF dydt + f yF dtdx -2 f F dtdxdy

k4 = f xF dtdx - f yF dydt

It is important that orientation be considered in the evalua-

tion of the coefficients in Table 3 (see [1]) . The sign conven-

tion is such that for a principal 2-form (e.g., dxdy) a positive

(negative) sign prevails on a face of the rectangle sL provided
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that application of a right-hand rule points outward from (in-

ward to ) the rectangle CQ. Writing fx for fx (similarly for
1

t and y) and assuming that tI < t x < x by way of
1 2' ~ 1 < 2 ' yl 'y2 ' yao

example we have,

f F dxdy = f f F(t 2 1 x,y) dxdy - f f F(tlx,y)dxdy,
y x y x

and

f xF dydt = x2 f f F(t,x 2fy)dydt -x f f F(t,x1 ,y)dydt
3t 1 t y

and

f xFdtdx = f f xF(t,xy 2)dtdx - f f xF(t,x,y,)dtdx.
3 x t x t

The remaining integrals may be expanded in a similar fashion.

Observe that differences are not entirely eliminated from the

final formulas. However, the formulas are so written to indicate

that the differences are taken after integration, even though in

certain cases the formula could be collapsed with a difference

taken before evaluation of the iterated integral.

The advantage of (3.6) over (1.13) as a means of calculation

of the generalized velocities is achieved mainly by the filtering

effect of the surface and volume integrals. As a matter of prac-

tice, several rectangles Q'. ..., ?m are selected. Each rectangle

I gives rise to an equation of the form (3.6),
e

4
k(e) - k(e) (37)i=l i _ k0

The resulting system of m equations in 4 unknowns may then be

solved by a least-squares method. Note that this approach may be

applied to the feedback tracking algorithm presented in Section 2
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to calculate the velocities y 1 .... f' of the target relative to

the window, replacing the corresponding calculations based on

(2.3) . This has been implemented in a computer program and tested

on real image data. The results are very encouraging and are pre-

sented in part in Appendix B. This method involves more com-

putational overhead, with the best rate achieved to this Point

being about 10 iterations ( =frames) per second. With some stream-

lining we believe that real-time rates of 30 frames per second

can be achieved.
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IV. Summary and Conclusions.

This report presents a method based on the theory of Lie

groups for velocity tracking in a dynamic image in wnich the

motion of picture parts can be ascribed to affine transformations.

A feedback tracking algorithm was developed and tested on sim-

ulated data.

Since the random disturbances in real images preclude the

use of simple methods for obtaining equations involving the

velocities of trajectory, a method based on integration of

differential forms was developed. This method was incorporated in

the feedback tracker and tested on real image data. The results

are very encouraging, with computation speeds approaching ten

frames per second on a VAX 11/780. We believe that this method

is viable as a component of a real-time video tracking system.

Among the problems left outstanding, a satisfactory algorithm

for target acquisition has not yet been developed. In the ex-

perimental work performed, the initial target location was supplied

as an input parameter. To be useful, a method for automating this

step is essential.

In addition, we continue to experience problems with numerical

percision. This seems to be related to the absence of sufficient

dynamic range in real image data, indicating that this could be

improved by changes in the capability of sensors. We feel that a

great improvement would result from greater contrast in the image

data.

Finally, the class of motions considered herein (affine or

restricted affine) is not general enough for many applications,
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and the methods need to be extended to include projective dis-

tortion as well.

The equations which relate generalized velocities to time-

varying images have other applications. They have been applied

to a problem in pattern matching with considerable success, as

fully described in [l]. The theoretical results and a summary

of the experimental results of [11] have been submitted for

publication as reference [8] , which is attached as Appendix C.
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APPENDIX A

Feedback Tracker Simulation

A typical imaging system might include a sensor with a dia-

meter (or cross section) of 25 mm and an optical focal length of

200 mm. At a 500 x 500 pixel density we obtain a conversion fac-

tor of .05 mm/pix or 20 pix/mm. With a target range of I km, say,

then we obtain a conversion rate from sensor to target of 5 m/n

@ 1 km.

In the results to be presented, translation velocities may

be regarded as being given in mm/sec. Conversion to pix/sec or

m/sec at the target may be done by multiplication by the appro-

priate factor. Thus, a translation velocity of 7 mm/sec at the

sensor corresponds to 20 pix/sec or to 5 m/sec at a target having

a range of I ki. A magnification velocity of 1/sec translates by

the same factor and would therefore represent a velocity of 5m/sec

1 km toward the sensor. On the other hand, rotational velocity

may be considered as given in radius/sec.

In Table A-1 we present the output of the tracking simulator

(the output routines were modified slightly for ease of presenta-

tion). Note that the target velocities (10, -10, 10, 10) corres-

pond to a 3-D object with a translational velocity of 86.6 m/sec

@ 1 km (about 194 miles/hour) which is rotating about 3 revolu-

tions per second about bore sight. The time base was chosen as

100 frames/sec. Inspection of the last four columns of Table A-1

shows that the target velocities have been acquired satisfactorily

after only 3 frames, at t=.03, and subsequently refined to exact

values.
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The tracking simulation program, whose listing follows, is

capable of a real-time rate of 33 frames/sec on a VAX 11/780, in-

cluding the time spent simulating target motion.

11

,I
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100 $
200 C C
300 C Program Title: TRACK4.FOR
400 C

500 C Function: Demonstrate feedback tracker using surthetic
600 C data. Provide simulated motion consisting of
'00 C translation, magnification and rotation.

800 C
o00 C Program Author: Thomas 6. Newman

1000 C Department of Mathematics
1100 C Texas Tech Universitv
1200 C Lubbock, Texas 79409
1300 C
1400 C Notice: Pers.is:;ior, is herewith granted foi use of these
1500 C Programs, in whole or in part, for other than
1600 C Persona' or corporate gain.

1700 C

1800 C t*t t*2 a: a:: *22Stttttt***E*****2****** *222 2*
1900 C
2000 COMMON /WINDOW/ IWSIZEWIND(5,5),SWIND(5,5),COORD(2,5,5)
2100 COMMON /EQU/ NEQU,NUNKA(9,9),XLAMDA(9),B(9)
2200 COMMON /PARMS/ TIME,XYSTEFTSTEPFEED(6)
2300 COMMON /COCHGS/ XTRANIYTRANIECOSIESINI,
2400 1 XTRANWYTRANWECOSWESINW,
2500 XVELIYVELIVMAOIVROTI,
2600 3 XVELWYVELWVMAGWgVROTW
2700 100 TYPE *,'ENTER VELOCITIES AND PRESS RETURN'
2800 READ (5*,,END=200) XVELIYVELIVMAGIVROTI
2900 CALL INIT

3000 DO 175 I=1,15
3100 CALL SAMPLE
3200 CALL DERIV
3300 CALL LINEG
3400 CALL UPDATE
3500 CALL MOVER

.600 CALL COMPAR
3700 175 CCNTINUE

3800 GO TO 100
3900 200 STOP

4000 END
4100 C

C. >>>>>>)>>> SUBROUTINE INIT "".. (..
4300 C
4400 C This subroutine Performs various initialization functions.
4500 C
4600 C

4700 SUBROUTINE INIT
4800 COMMON /WINDOW/ IWSIZEWIND(5,5),SWIND(5,5),COORD(2,5,5)
4900 COMMON /EQU/ NEQU,NUNK,A(9,9)qXLAMDA(9),B(9)

5000 COMMON /PARMS/ TIMEXYSTEPTSTEPFEED(6)
5100 COMMON /COCHOS/ XTRANIYTRANIECOSIESINI,
5200 1 XTRANWYTRANWECOSWESINW,
5300 2 XVELIYVELIVMAGIVROTI,

Z400 3 XVELWYVELWVMAGWVROTW
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5500 C

5600 C Data is to be sampled at each Point of a
5700 C window of size IWSIZE bv IWSIZE. A linear eauation
5800 C is to be formed at each 'interior' point, using the
5900 C boundarv Points onlv in the differentiation Process.
6000 C
6100 C The number of eauations, NEQU, is therfore the number
6200 C of interior Points, and involve NUNK unknowns, 4
6300 C in this Program, but changeable to 6 for GA(2).
6400 C

6500 C XYSTEP and TSTEP are logical steps in space and time.
6600 C
6700 IWSIZE = 5
6800 NEOU = (IWSIZE - 2)**2
6900 NUNK = 4
7000 XYSTEP = 0.05
7100 TSTEP = 0.01
7200 C
7300 C
7400 C GENERATE THE COORDINATES OF THE SAMPLE GRID RELATIVE TO
7500 C THE WINDOW.
7600 C
7700 MID = IWSIZE/2 + 1

7800 DO 10 I=I,IWSIZE
7900 DO 15 J=I,IWSIZE

8000 C
8100 C WINDOW ORIGIN AT CENTER OF SAMPLE GRID
8200 C

8300 COORD(1,I,J)=XYSTEP*FLOAT(I - MID)
8400 COORD(2,I,J)=XYSTEP*FLOAT(J - MID)
8500 C
8600 C WINDOW ORIGIN AT CORNER OF SAMPLE GRID
8700 C
8800 C COORD(I,IJ)=XYSTEP*FLOAT(I)
8900 C COORD(2,I,J)=XYSTEP*FLOAT(J)
9000 C
9100 15 CONTINUE
9200 10 CONTINUE
9300 C
9400 C SET FEEDBACKS TO UNITY. LOWER VALUES PRODUCE
9500 C SLOWER ACQUISITION BUT GREATER STABILITY. LARGER VALUES
9.!00 C MAY SPEED AQUISITION BUT CAUSE INSTABILITY.
9700 C
9800 FEED(1) z 1.0
9900 FEED(2) = 1.0
I0000 FEED(3) = 1.0
10100 FEED(4) = 1.0
v'200 FEED(S) = 1.0
10300 FEED(6) = 1.0
10400 C
10500 C INITALIZE THE TRAJECTORY OF THE IMAGE AT BORE SIGHT
10600 C
10700 XTRANI = 0.0

10800 YTRANI = 0.0
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10900 ECOSI = 1.0
11000 ESINI = 0.0
11100 C
11200 C INITALIZE THE POSITION OF THE WINDOW AT BORE SIGHT
11300 C
11400 XTRANW = 0.0
11500 YTRANW = 0.0
11600 ECOSW = 1.0
11700 ESINW = 0.0
11800 C

11900 C INITALIZE THE WINDOW VELOCITY TO XERO
12000 C
12100 XVELW = 0.0
12200 YVELW = 0.0
12300 VMAGW = 0.0
12400 VROTW = 0.0
12500 C
12600 C GET AN INITIAL SAMPLE FROM WINDOW
12700 C
12800 TIME = 0.0
12900 CALL SAMPLE
13000 C
13100 C TAKE THE INITIAL STEP IN TIME
13200 C
13300 CALL MOVER
13400 C
13500 C PRINT PAGE HEADINGS
13600 C
13700 WRITE (6,1000)
13800 WRITE (6,1010)
13900 1000 FORMAT('I','TIME',5X,'XTRANI',8X,'YTRANI',BX,'ECOSI',9X,
14000 1 'ESINI',9X,'XVELI',9X,'YVELI',9X,'VMAGI',9X,'VROTI')
14100 1010 FORMAT(15X,'XTRANW',8X,'YTRANW',BX,'ECOSW',9X,
14200 1 'ESINW',9X,'XVELW',9X,'YVELW',9X,'VMAGW',9X,'VROTW')
14300 C
14400 C PRINT THE INITIAL COMPARISON BETWEEN TRAAJECTORIES
14500 C
14600 CALL COMPAR
14700 RETURN
14800 END
14900 C
15000 C >>>>>>>>> SUBROUTINE SAMPLE <<\(<<<<<<
15100 C
15200 C This subroutine generates values in a rectangular
15300 C grid in the tracking window, saving the old values.
15400 C
15500 SUBROUTINE SAMPLE
15600 COMMON /WINDOW/ IWSIZEWIND(5,5),SWIND(5,5),COORD(2,5,5)
15700 DO 20 I=IIWSIZE
15800 DO 25 J=IIWSIZE
15900 X = COORD(1I,J)
1000 Y = COORD(2,1,J)
16100 SWIND(IJ) = WIND(IJ)
16200 WIND(IJ) = FWIND(XY)
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16300 25 CONTINUE

16400 20 CONTINUE
16500 RETURN
16600 END
16700 C
16800 C >>>>>>>>>> SUBROUTINE DERIV <<<<<<<<<<
16900 C
17000 C This routine calculates the various derivatives needed
17100 C for formation of the linear svstem for the generalized
17200 C velocities.
17300 C
17400 SUBROUTINE DERIV
17500 COMMON /WINDOW/ IWSIZEWIND(5,5)ySWIND(5,5),COORD(2,5t5)

17600 COMMON /EOU/ NEQUNUNKA(9v9),XLAMDA(9),B(9)
17700 COMMON /PARMS/ TIMEXYSTEPTSTEPFEED(6)
17800 SCALER = 2.0 * XYSTEP/TSTEP

17900 K IWSIZE - 2
18000 DO 20 I=I,K
18100 II = I + 1

18200 DO 10 J=1,K
18300 JJ = J + 1
13400 L = (I-1)*K + J
18500 X = r'ORD(1,IIJJ)
18600 Y = COORD(2'IIJJ)
18700 DX=WIND(II+1,JJ) - WIND(II-1,JJ)

18800 DY=WIND(IIJJ+I) - WIND(IIJJ-1)

18900 A(L,1)= DX
19000 A(L,2)= DY

19100 A(L,3)= X*DX + Y*DY

19200 A(L,4)= X*DY - Y*DX
19300 B(L)= SCALER * (WIND(IIJJ) - SWIND(IIJJ))

19400 10 CONTINUE
19500 20 CONTINUE
19600 RETURN
19700 END
19800 C
19900 C >>>>>>>>>> SUBROUTINE LINED <<<<<<<<<<

20000 C
20100 C Modified from the argument form:
20200 C LINEQ(M,N,AX,B,CC)

20300 C
20400 SUBROUTINE LINED
20500 COMMON /EQU/ NEQU,NUNKA(9,9),X(9),B(9)

20600 INTEGER CC

20700 C
20800 C SOLVE AX=B. T HOLDS AN UPPER TRIANGULAR MATRIX WHILE S

20900 C IS WORKSPACE. THE METHOD FACTORS A=U*T WHERE THE COLUMNS OF
21000 C U ARE ORTHOGANAL AND T IS TRIANGULAR. THE RESULTING SYSTEM

21100 C T*X=B' IS EASILY SOLVED BY BACK SUBSfITUTION. ASSUME M

21200 C EQUATIONS AND N UNKNOWNS. ( N '= M <= 9 )
21300 C THE MATRIX OF COEFFICIENTS, A IS STORED IN THE FIRST N ROWS
21400 C AND THE FIRST M COLUMNS OF THE 9X9 A ARRAY. THE ROUTINE

2100 C BRINGS IN THE WHOLE 9X9, BUT ONLY USES A(10) TO A(NM)
21o00 C (RECALL THAT FORTRAN STORES THE ARRAY COLUMN-WISE, BUT
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21700 C ADRESSES THE ELEMENTS IN THE STANDARD ROWCOLUMN FORMAT)

21800 C NOTE: THE A ARRAY IS ALTERED DURING EXECUTION.
219'i0 C
;20?l DIMENSION T(9,9)
22100 CC=l
1100 M = NEOU
22300 N = NUNK
22400 C M MUST BE ,= 9, AND N<=M. CC IS A COMPLETION CODE; IF THE
2500 C SUBROUTINE EXECUTES PROPERLY CC WILL BE RESET TO 0 BEFORE RETURN
22600 DO 5 I=INUNK
22,O X(I) = 0,0
22800 5 CONTINUE
22900 DO 40 I=1,N
23000 IF (I.EQ.I) GO TO 25
23100 DO 20 J=tM
23200 S=O
23300 I1=1-I
23400 DO 10 K=1,I1
23500 C IF (T(KK) .LT. .0001) G0 TO 5000
23600 S=S+A(JK)*T(KtI)/T(KPK)
23700 10 CONTINUE
23800 A(JI)=A(JI)-S
23900 20 CONTINUE
24000 25 DO 40 K=IN
24100 S=O
24200 DO 30 J=l,M
24300 S=S+A(JI)*A(JK)
24400 30 CONTINUE
24500 T(IK)=S
24600 40 CONTINUE
24700 DO 60 Im1,N
24800 S=O
24900 DO 50 JiN
25000 S=S+A(JI)$B(J)
25100 50 CONTINUE
12500 X(I)=S
25300 60 CONTINUE
25400 DO 80 I=I,N
25500 II=N+I-I
25600 IF (I1.EO.N) GO TO 75
25700 12=11+1
25800 DO 70 J=12,N
25900 X(I1)=X(II)-T(11,J)$X(J)
26000 70 CONTINUE
26100 C IF (T(II,I1).LT..0001) GO TO 5000
26200 75 X(II)=X(II)/T(II,II)
26300 80 CONTINUE
26400 CC20
26500 RETURN
26o00 5000 CC=-!
26700 C A COMPLETION CODE OF -1 INDICATES THAT THE SUBROUTINE
26800 C TRIED TO DIVIDE BY 0.
26q00 RETURN
27000 END
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27100 C
27200 C '>X>>>>>> SUBROUTINE UPDATE <<<-'<X <,<<
27300 C
27400 C This routine updates the velocities of the window
27500 C following the calculation of the target velocities
27600 C relative to the window. Sensitivitv may be varied
27700 C bv the feedback factors in the array FEED.

27800 C
27900 SUBROUTINE UPDATE
28000 COMMON /WINDOW/ IWSIZEWIND(5,5),SWIND(5,5),COORD(2,5,5)
23100 COMMON I/EU/ NEQU,NUNKA(9,9),XLAMDA(9),B(9)
28200 COMMON /PARMS/ TIMEXYSTEPTSTEPFEED(6)
23300 COMMON /COCHGS/ XTRANIYTRANIECOSIESINI,
28400 1 XTRANWPYTRANWECOSWESINW,
28500 2 XVELIYVELIVMAGIVROTI,
23600 3 XVELWYVELW,VMAGW,VROTW
28700 DVELX = (ECOSW t XLAMDA(1) - ESINW * XLAMDA(2)) -

29800 1 (XLAMDA(3) * XTRANW - XLAMDA(4) * YTRANW)
28900 DVELY = (ESINW * XLAMDA(1) + ECOSW * XLAMDA(2)) -

29000 2 (XLAMDA(4) * XTRANW + XLAMDA(3) * YTRANW)
29100 DMAGV = XLAMDA(3)
29200 DVROT = XLAMDA(4)
29300 C
29400 XVELW = XVELW - FEED(1) * DVELX
29500 YVELW = YVELW - FEED(2) * DVELY
29600 VMAGW = VMAGW - FEED(3) * DMAGV
29700 VROTW = VROTW - FEED(4) * DVROT
29800 C
Z9900 RETURN
30000 END
30100 C

30200 C >>>>X>>> SUBROUTINE MOVER <<<<<<<<<<
30300 C
30400 C This routine moves the window bv taking a step in

30500 C the differential eouatiors for the affine tranformation
30600 C which controls the window location. The method used is
30700 C a simple Euler method.
30800 C
30900 C The routine also simulates the motion of the target by
31000 C solving the correspondini differential eauation for the
31100 C target. This Portion would be removed if real data were
31200 C being used.
31300 C
31400 SUBROUTINE MOVER
31500 COMMON /'PARMSi TIMEXYSTEPTSTEPFEED(6)
31600 COMMON /COCHGS/ XTRANIYTRANIECOSIESINI,
31700 I XTRANWPYTRANW,ECOSW,ESINW,
31800 2 XVELIPYVELIVMAGIVROTI,
31900 3 XVELWYVELWVMAGWVROTW

32000 DECOS = VMAGW * ECOSW - VROTW * ESINW
32100 DESIN = VROTW * ECOSW + VMAGW * ESINW
32200 ECOSW = ECOSW + TSTEP * DECOS
32300 ESINW = ESINW + TSTEP S DESIN
32400 C
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32500 DXTRAN = XVELW + VMAGW*XTRANW - VROTW*YTRANW
32600 DYTRAN = YVELW + VROTW*XTRANW + VMAGW*YTRANW
32700 XTRANW = XTRANW + DXTRAN*TSTEP
32900 YTRANW = YTRANW + DYTRAN*TSTEP
32900 C
33000 C The following Portions simulate motion of the target.
33100 C
33200 DECOS = VMAGI * ECOSI - VROTI * ESINI
33300 DESIN = VROTI * ECOSI + VMAGI * ESINI
33400 ECOSI = ECOSI + TSTEP * DECOS
33500 ESINI = ESINI + TSTEP * DESIN
33600 C
33700 DXTRAN = XVELI + VMAGI*XTRANI - VROTI*YTRANI
33800 DYTRAN = YVELI + VROTI*XTRANI + VMAOI*YTRANI
33900 XTRANI = XTRANI + DXTRAN*TSTEP
34000 YTRANI = YTRANI + DYTRAN*TSTEP

34100 C
34200 C Increment time.
34300 C
34400 TIME = TIME + TSTEP
34500 C
34600 RETURN
34700 END
34800 C
34900 C >>>>>>>>>> SUBROUTINE COMPAR <<<<<<<<<<
35000 C
35100 C This routine Produces Printed output for evaluation
35200 C Purposes, and is therefore ancillarv to the operation
35300 C of the tracker.
35400 C
35500 SUBROUTINE COMPAR
35600 COMMON /PARMS/ TI1EXYSTEPTSTEPFEED(6)
35700 COMMON /COCHGS/ XTRANIYTRANIECOSIESINI,
35800 1 XTRANWYTRANWPECOSWESINW,
35900 2 XVELItYVELIVMAGIVROTI,
36000 3 XVELWYVELWVMAGW,VROTW
36100 WRITE(6,200O)TIMEXTRANIYTRANIECOSIESINI,XVELIYVELIVMAGI,
36200 1 VROTI
36300 2000 FORMAT(2XF3.2,8(3X,E11.4))
36400 WRITE(6,2010)XTRANWYTRANWECOSWESINWXVELWYVELWPVMAGWY
36500 1 VROTW
36600 2010 FORMAT(10X,8(3X,ElI.4))
36700 RETURN
36800 END
;6900 C
37)00 C >)'>> FUNCTION FWIND <<<K<<<<<
37100 C
37:00 C This function returns a value at the Point (xi)
37300 C in the window. It first maps to the corresponding
37400 C Point in absolute image coordinates and calls for
37500 C image value at that Poirt (see FIMAGE below).
37600 C
37700 FUNCTION FWIND(XY)
37300 COMMON /COCHGS/ XTRANIYTRANIECOSIESINI,
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37900 1 XTRANWYTRANWECOSWiESINW,

38000 2 XVELIYVELIVMAGItVROTI,
38100 3 XVELWYVELWVMAGWVROTW
33200 C

38300 C
38400 C
33500 XIMAGE = XTRANW + ECOSW*X - ESINW*Y
38600 YIMAGE = YTRANW + ESINW*X + ECOSW*Y
38700 FWIND = FIMAGE(XIMAGEYIMAGE)
38800 RETURN
38900 END
39000 C
39100 C >>>>>>>>>> FUNCTION FIMAGE <<<<<<<<<<
39200 C
39300 C This function returns the value at point (xv) in the
39400 C absolute image coordinate svstem. It maps to target
39500 C coordinates and calls for the value at the corresponding
39600 C Point on the tarset (see FOBJ below).
39700 C
39800 FUNCTION FIMAGE(XY)
39900 COMMON /COCHGS/ XTRANIYTRANIECOSIESINIt
40000 1 XTRANWYTRANWECOSUESINW,

40100 2 XVELIYVELIVMAGIVROTI,
40200 3 XVELWYVELWVMAGWVROTW
40300 C
40400 C
40500 DET = ECOSI**2 + ESINISZ2
40600 DX = X - XTRANI
40700 DY = Y - YTRANI
40800 C
40900 C

41000 XOBJ= ( ECOSI$DX + ESINI*DY)/DET
41100 YOBJ= ( -ESINI*DX + ECOSI*DY)/DET
41200 FIMAGE = FOBJ(XOBJPYOBJ)

41300 RETURN

41400 END
41500 C
41600 C >>>>>>>>>> FUNCTION FOBJ (««<<(<<
41700 C
41800 C This function returns the grav value at a Point (xv)
41900 C in target coordinates. For actual tracking, this
42000 C routine would be replaced bq one which retrieves from
42100 C the image database. In the simulation, however, the
42200 C routine merelv returns a sdnthetic value generated
42300 C from an expressior,.
42400 C
42500 FUNCTION FOBJ(XtY)
42600 FOBJ = 1.0 * 10.0X -5,0*Y + 20.0X*Y
42700 RETURN
42800 END



APPENIDIX B

Tracking With Differential Forms

A tracking program was developed which utilized the theory

presented in Section III. In order to test this program, digit-

ized video images were obtained from the Advanced Technology

Office, Instrumentation Directorate, White Sands Missile Range.

One such image is shown in Figure B-i. A sequence of test images

was prepared from this data by shifting to inject additional mo-

tion. Sections of the first six frames are shown in the left hand

column of Figure B-2.

Parameters in the tracking program were set to use a 3x3 win-

dow in 3 consecutive frames to form a 3x3x3 rectangle in space.

Since the pr- tram uses 9 such windows, the actual track gate con-

sisted of 9x9x3 points.

The right hand column of Figure B-2 shows the output frames

obtained by the tracker. Observe that the output lags the input

by the depth of the track gate. This is why there are fewer out-

puts frames than input frames. We see that the target was ac-

quired immediately, and successfully tracked over the full se-

quence of frames.

The computation rate was about 10 frames per second on a

VAX 11/780. However, the program is written to allow selection

of window sizes and could be streamlined a great deal.

Although the results shown in Figure B-2 are impressive, we

hasten to point out that the motion is mostly translation, and our

attempts to test the algorithm on a wide range of motions have

been frustrated by availability of data. Further work is ongoina,

and refinements to the tracking program are expected to be forth-

coming.
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20r' C PROGRAMMER : DONNA K. TERRAL
40 C DEPARTMENT OF MATHEMATICS
60 C TEXAS TECH UNIVERSITY
S0 C

100 C PERMISSION IS HEREWITH GRANTED TO UTILIZE THIS PROGRAM FOR
120 C OTHER THAN PERSONAL OR CORPORATIVE GAIN.
140 C

160 C
180 C *~* *****2*$*IiIIIIIi **$1**2****:* I**E*$1*******Is*$::*uu

200 C ****************$$$**** MAIN PROGRAM *$***** *****UE
220 C :
240 C PURPOSE: GIVEN A SET OF IMAGES, TRACK A TRAGET BY USING
260 C INTEGRATION TO DETERMINE THE MOTIONS (TRANSLATIONROTATION,
280 C MAGNIFICATION) OF THE TARGET.
300 C $
320 C
340 C * COMMON DECLARATIONS *
360 C
380 PARAMETER (IW=9,JW=9,KW=3,IB=3iJB=3,KB=3,ISIZE=128,JSIZE=128)
400 C
420 COMMON /WINDOW/ WIND(IW,JWKW),CORRD(ISIZEJSIZE,2)
440 INTEGER WIND
460 COMMON /ORIGIN/ IOJOKOXOYO
480 INTEGER IOJOKOXOYO
500 COMMON /BUFFER/ BUF(IBJBKB)
520 INTEGER BUF
540 COMMON /CORNER/ X1,X2,YIY2,TIT2
560 INTEGER XIX2,Y1,Y2,TI,T2
580 COMMON /WEIGHT/ W(IBJBKB),WX(JBKB),WY(IBKB),WT(IBJB)
600 INTEGER WWXWYWT
620 COMMON /COCHGS/ XVELIYVELIVROTIVMAGITIMETSTEP
640 REAL XVELIYVELIVROTIVMAGITIME,TSTEP
660 COMMON /PARMS/ ROWCOLPROWPCOLNUMROW,NUMCOLWTEST
680 INTEGER ROWCOLPROWPCOLNUMROWNUMCOLWTEST
700 COMMON /IMAGE/ IMAGE(ISIZEJSIZE)
720 INTEGER*2 IMAGE
740 COMMON /EQU/ ALPHA(4),BETA,COEFF(9,4),VECTOR(9),SOLN(4),FEED(4)
760 INTEGER ALPHABETA
780 C
800 C * MAIN VARIABLES *
820 INTEGER 1I,JI,KI
340 INTEGER CCCOUNT
360 DATA COUNTCC,KI /1,1,1/
330 C
900 CALL INIT
920 C
?40 C *** MAIN LOOP ***
760 DO 100 LOOP = 1,4
"30 C

1'0o0 C ALL OR A PORTION OF THE INTEGRATION RESULTS CAN BE USED
1020 SOLN(t) = FEED(1) * SOLN(t)
1040 SOLN(2) = FEED(2) * SOLN(2)
1060 SOLN(3) = FEED(3) * SOLN(3)
1080 SOLN(4) = FEED(4) * SOLN(4)
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1100 C

1120 CALL WINDOW (LOOP)
1140 C
1160 CALL PRINT
1180 C
1200 C *** LOOP COMPUTES MOTION USED TO MOVE WINDOW *S$
1220 DO 1 J1 = l,JWJB
1240 DO 2 II = 1,IWIB
1260 CALL GETBUF (IIJI,K1)
1280 IF (LOOP ,NE. 1) GO TO 10
1300 CALL BLDW
1320 10 CALL GETEOU
1340 CALL MATRIX (COUNT)
1360 COUNT = COUNT + 1
1380 2 CONTINUE
1400 1 CONTINUE
1420 CALL LINEQ (COEFFSOLNVECTOR,9,4,CC)
1440 COUNT = I
1460 C *$2$ END MOTION LOOP *2*
1480 C
1500 TIME = TIME + TSTEP
1520 t0 CONTINUE
1540 C *** END MAIN LOOP $*
1560 C
1580 STOP
1600 END
1620 C
1640 C ****2 $*$$**$E *2 *** :s**E: 5E*::*$!$***
1660 C ********22**2************ ********** :*:*2*:****
i680 C SUBROUTINE GETBUF FILLS A BUFFER ARRAY WHICH WILL CONTI-. N THE
1700 C DATA POINTS FORMING THE CUBE TO BE USED IN SUBROUTINE GETEOU.
1720 C THE POSITION IN WHICH TO BEGIN IS PASSED THRU THE ARGUMENTS.
1740 C <BUF(1,1,1)=WIND(IIJ,K1)>
17,50 C *******2t**1**** *******22IIsz*****$***~i*I$ *Il$$*$$*:::::*
1730 C
1800 SUBROUTINE GETBUF (I,J1,K1)
1820 C
1840 C * ARGUMENTS 2
1860 INTEGER II,J1,K
1880 C
1800 C * COMMON DECLARATIONS *
170C C

iQ4C PARAMETER (IW=9,JW=9,KW=3,IB=3,JB=3,KB=3,ISIZE=128,JSIZE=128)

1960 C
i'80 COMMON /WINDOW/ WIND(IWJWKW),CORRD(ISIZEJSIZE,2)
2000 INTEGER WIND
2020 COMMON /ORIGIN/ I0,J0,K0,X0tY0
2040 INTEGER IOJO,KO,XO,YO
2q60 COMMON /BUFFER/ BUF(IBJBKB)
2080 INTEGER BUF
2100 COMMON /CORNER/ XIX2,Y1,Y2,TIT2
2120 INTEGER XIX2,YI,Y2,TlT2
2-140 C
2160 C 2 LOCAL VARAIBLES *
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2180 INTEGER X,Y,T
2200 C
2220 Xi = 11 - IO
2240 Yt = J1 - JO
2260 Tt = Kl - KO
2280 X2 = X1 + IB - I
2300 Y2 = Y1 + JB - I
2320 T2 = T* + KB - 1
2340 C
2360 DO 30 1 = 1,1IB
2380 DO 30 J = IJB
2400 DO 30 K = lKB
2420 X = II + I - 1

2440 Y = J1 + J - I
2460 T = Kl + K - 1
2480 BUF(I,J,K) = WIND(X,Y,T)
2500 30 CONTINUE
2520 RETURN
2540 END
2560 C
2580 C **1****E****s*1*1*I*1**%111*****1**11**,z1*****
2600 C ***** *********** *****************s*s*** ** *****:s
2620 C SUBROUTINE MATRIX TAKES THE ALPHAS AND BETA FROM THE SUBROUTINE
2640 C GETEQU AND PUTS THEM IN THE FORM AX=B WHERE LOOPS OF GETEOU
2660 C FORM THE 2-DIMENSIONAL ARRAY A AND THE VECTOR B.
2680 C ONCE AX=B IS FORMED LINEU IS USED TO SOLVE FOR X.
2700 C
2720 C IN MATRIX, COEFF(9,4) IS ARRAY A AND VECTOR(9) IS ARRAY B
2740 C ******% ** **$****2 11s$*** 1**s*11**u*1**g**s
2760 C
2780 SUBROUTINE MATRIX (COUNT)
2800 C
2820 C * ARGUMENTS *
21940 INTEGER COUNT
2860 C
2380 C * COMMON DECLARATIONS *
2900 COMMON /EQU/ ALPHA(4),BETACOEFF(9,4),VECTOR(9),SOLN(4),FEED(4)
2920 INTEGER ALPHABETA
2940 C
2V60 COEFF(COUNTI) = FLOAT(ALPHA(1))
2980 COEFF(COUNT,2) FLOAT(ALPHA(2))
3000 COEFF(COUNT,3) FLOAT(ALPHA(3))
3020 COEFF(COUNT,4) FLOAT(ALPHA(4))
3040 VECTOR(COUNT) = FLOAT(BETA)
3060 RETURN
3080 END
31.0 C
3120 C **********:***s*****g*:lttlilllltZll,**sltg***gulg*****u:*gllgs

3140 C **********************************g*********************zs:
Z160 C SUBROUTINE GETEOU
3130 C COMPUTES CONSTANTS ALPHA(1) THRU ALPHA(4) AND BETA IN THE
3200 C EQUATION ALPHA(l) * LAMBDA(l) + ALPHA(2) * LAMBDA(2) +
3220 C ALPHA(3) * LAMBDA(3) + ALPHA(4) * LAMBDA(4) = BETA, WHERE
3240 C ALPHA(t) THRU ALPHA(4) AND BETA ARE FORMED FROM SURFACE AND
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3260 C VOLUME INTEGALS OVER A CUBE INDEXED BY XIX2,Y1,Y2,T1,T2.
3280 C THESE INTEGALS ARE NUMERICALLY INTEGRATED USING THE TRAPEZIOD
3300 C RULE.
3320 C
3340 C LET:
3360 C FXYT REPRESENT THE VOLUME INTEGAL OVER THE CUBE
3380 C FXY1 REPRESENT THE SURFACE INTEGAL OVER THE FACE XY @ T=I
3400 C FXY2 .' FACE XY R T=2
3420 C FYTI . . .. . . FACE YT @ X=I

3440 C FYT2 a . FACE YT @ X=2

3460 C FTXI ' . .. . . FACE TX @ Y=I
3480 C FTX2 a I.. . FACE TX @ Y=2
3500 C YFYT1 REPRESENT THE INTEGAL OVER Y $ (FACE YT) @ X=l
3520 C YFYT2 . Y $ (FACE YT) X=2

3540 C XFTXI . . . . X * (FACE TX) @ Y=I
3560 C XFTX2 .X * (FACE TX) @ Y=2
3580 C
3600 C THEN:
3620 C ALPHA(l) = FYT2 - FYT1

3640 C ALPHA(2) = FTX2 - FTXI

3660 C ALPHA(3) = X2*FYT2 - XI*FYT1 - 2FXYT + Y2*FTX2 - Y1*FTX1
3680 C ALPHA(4) = YFYTI - YFYT2 + XFTX2 - XFTX1

3700 C BETA = FXYI - FXY2

3720 C ******E***********3**$ *****U****$****S*I$R$ *Z$ 33**$$ I$$
3740 C
3760 SUBROUTINE GETEOU
3780 C
3800 C * COMMON DECLARATIONS
3820 C
3840 PARAMETER (IW=9,JW=9,KW=3,1B=3,JB=3,KB=3,ISIZE=128,JSIZE=128)
3860 C
3880 COMMON /BUFFER/ BUF(IBJBKB)
3900 INTEGER BUF
3920 COMMON /CORNER/ X1,X2,Y1,Y2,T1,T2
3940 INTEGER XiX2,YlY2,TlT2
3960 COMMON /WEIGHT/ W(IBJB,KB),WX(JBKB),WY(IBKB),WT(IBJB)
3980 INTEGER WWX,WYWT
4000 COMMON /EOU/ ALPHA(4),BETACOEFF(9,4),VECTOR(9),SOLN(4),FEED(4)
4020 INTEGER ALPHABETA
4040 C
4060 C * LOCAL VARIABLES *
4080 INTEGER FXY1,FXY2,FYTIFYT2,FTX1,FTX2,YFYT1,YFYT2,XFTX1,XFTX2,FXYT
4100 C
4120 FXYT = 0
4140 FXYI = 0
4160 FXY2 = 0
4180 FYTI = 0
4200 FYT2 = 0
4220 FTXI = 0

4240 FTX2 = 0

4260 YFYT1 = 0
4280 YFYT2 = 0
4300 XFTXI a 0
4320 XFTX2 = 0
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4340 C

4360 DO 50 I = 1,IB
4380 DO 50 J = 1,JB
4400 FXYl = FXYl + BUF(ItJ,1) * WT(IJ)
4420 FXY2 FXY2 + BUF(I,JYKB) W WT(IJ)
4440 50 CONTINUE
4460 DO 60 J = IJB
4480 DO 60 K = tKB
4500 FYTI = FYTt + BUF(tJK) * WX(JK)
4520 FYT2 = FYT2 + BUF(IB,J,K) $ WX(JK)

4540 YFYT1 = YFYT1 + (J + Y1 - 1) $ BUF(1,JK) $ WX(JK)
4560 YFYT2 = YFYT2 + (J + Y1 - 1) * BUF(IBgJPK) * WX(JK)
4580 60 CONTINUE

4600 DO 70 I = 1,IB
4620 DO 70 K = lKB
4640 FTX1 = FTX1 + BUF(Il,,K) W UY(IK)

4660 FTX2 = FTX2 + BUF(IrJBK) * WY(IK)
4680 XFTXI = XFTX1 + (I + XI - 1) * BUF(IIK) * WY(IK)
4700 XFTX2 = XFTX2 + (I + Xl - 1) $ BUF(IJBK) $ WY(IK)

4720 70 CONTINUE
4740 DO 80 1 = 1,11
4760 DO 80 J = 1,JB
4780 DO 80 K = IKB
4800 FXYT = FXYT + BUF(I,J,K) * W(I,J,K)
4820 80 CONTINUE
4840 C
4860 ALPHA(1) = FYT2 - FYTI
4880 ALPHA(2) = FTX2 - FTX1

4900 ALPHA(3) = X2 * FYT2 - XI * FYTI - FXYT + Y2 * FTX2 - YI * FTXI
4920 ALPHA(4) = YFYT1 - YFYT2 + XFTX2 -XFTX1
4940 BETA = FXYI - FXY2

4960 C
4980 RETURN
5000 END
5020 C
5040 C *$$ *************************$*$**************S********$$$$$$$$
5060 C ***********E*********$***********************$******U************
5080 C SUBROUTINE BLDW BUILDS THE WEIGHING ARRAYS FOR 'HE
5100 C TRAPEZIOD RULE USED IN THE SUBROUTINE GETEOU. THESE ARRAYS
5120 C ARE PASSED TO GETEOU THRU A COMMON BLOCK.

5140 C ********************$**$$****$*********:**z*$*Z***:*S:u*:**
5160 C
5180 SUBROUTINE BLDW
5200 C
5220 C t COMMON DECLARATIONS *
5240 C
!260 PARAMETER (IW=9,JW=9,KW=3,1B=3,JB=3,KB=3,ISlZE=I28,JSIZE=l28)
5280 C
5300 COMMON /WEIGHT/ W(IBJBKB),WX(JBKB),WY(IBKB),WT(1BJB)

5320 INTEGER WWXtWYWT
5340 C
5360 C LOCAL VARAIPLES
5380 INTEGER XYT
S400 C

LS
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5420 X =IB -1
5440 y =JB -1
5460 T= KB- 1
5480 C
5500 DO 40 1 2PX
5520 00 40 J = 2Y
5540 DO 40 K = 2tT
5560 W(IrIl) = 2
5580 W(ItJBPI) = 2
5600 WL1,Jfl) = 2

5620 W(IBtJv1) = 2
5640 W(liJBPK) = 2
5660 W(IB,1,K) a 2
5680 W(It1tKB) = 2
5700 W(1pJtKD.) = 2
5720 g(IBPJPKB) = 2
5740 W(IPJDKB) = 2
5760 W(lDJBPK) = 2
5780 W(l~lrK) 22
5800 W(ItJpk) = 8

58210 W(ltJtK) = 4
5840 W(IPIPK) = 4 '
5860 W(IrJvl) 4

5880 W(lJBrK) 2 4
5900 W(IBPJPK) = 4
5920 I(IPJPKB) = 4
5940 WY(li,) = 2
5960 UY(IPK) = 2
5980 WY(IPK) = 4
6000 WY(IPKB) z 2.
6020 WY(IBtK) = 2

1$140 T(Itl) = 2
10 WT(1,J) = 2

6080 WT(IJ) = 4
6100 WT(ItJB) = 2

6120 UT(IBtJ) = 2
6140 WX(JBPK) = 2
6160 IJX(JrKB) z 2
6180 WX(IPK)
6200 WX(j,1) = 2
6220 UX(JPK) = 4
6240 40 CONTINUE
6260 U(1,1,1) = 1
6280 U(1,JD.1) z 1
6300 W(IPJDKB) 2 1
6320 W(lp1,KB ) z 1
6340 U(IB,1,1) = 1
6360 U(IBPJ9,1) = 1
6380 WC!Br1,KB) = 1
6400 U(IDJBtKB) = 1
6420 UX(1,1) =1

6440 WX(1,KB) =1

6460 WX(JD,1) =

6480 WX(jBtKB) 2 I
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6500 WY(1,1) = 1
6520 WY(1,KB) = 1

6540 WY(IBI) = 1
6560 WY(IBKB) = I
6580 WT(Ii) = 1
6600 WT(1#JB) = 1
6620 WT(IB,', = I
6640 WT(IB,JB) = 1
6660 RETURN
6680 END
6700 C
6720 C **Zz z***:*:***$*s:*z**$**:*u::ugs*:g:*$$**$ss:*:*u:*$Zg:*g*Z:g
6740 C ************$********:**S***:* : *EuZsZ ***:$:.**X*Zs**g::
6760 C SUBROUTINE PRINT WRITES TO UNIT : 66 THE MOTION PARAMETERS
6780 C OF THE IMAGE AND THE WINDOW AT EACH TIME STEP. THE PIXEL
6800 C VALUES 'IN THE WINDOW MAY ALSO BE PRINTED IF NEEDED.

6820 C
6840 C
6860 SUBROUTINE PRINT
6880 C
6900 C * COMMON DECLARATIONS
6920 C
6940 PARAMETER (IW=9,JW=9,KW=3,IBL3,JB=3,KB=3,ISIZE=128,JSIZE=128)
6760

6980 COMMON /WINDOW/ WIND(IWtJWKW),CORRD(ISIZEPJSIZE,2)
7000 INTEGER WIND
7020 COMMON /ORIGIN/ IO,JO,KOXOYO
7040 INTEGER I0,J0,KO,X0,Y0
7060 COMMON /COCHGS/ XVELIYVELIVROTIVMAGITIMETSTEP
7080 REAL XVELIYVELIVROTIVMAGI,TIMETSTEP
7100 COMMON /PARMS/ ROWCOLPROWPCOLNUMROWNUMCOLWTEST
7120 INTEGER ROWCOLPROWPCOLNUMROWNUMCOLWTEST
7140 COMMON /EQU/ ALPHA(4),BETACOEFF(9,4),VECTOR(9),SOLN(4)PFEED(4)
7160 INTEGER ALPHABETA
7180 C
7200 C * LOCAL VARIABLES t
7220 REAL XTRANWYTRANWROTWMAGWXVELWYVELWVROTWVMAGWXTRANI,
7240 I MAGIROTIYTRANI
7260 C
7280 DATA XTRANWtYTRANWPROTWMAGW /0,0,0,0/
7300 C
7320 XTRANI = XVELI*TIME
7340 YTRANI = YVELI*TIME
7360 MAGI = VMAGI*TIME
7380 ROT/ = VROTItTIME
7400 C

7420 XTRANW = SOLN(1) + XTRANW
7440 YTRANW = SOLN(2) + YTRANW
7460 MAGW = SOLN(3) + MAGW
7480 ROTW = SOLN(4) + ROTW
7500 C
7520 XVELW = SOLN(I)$(I/TSTEP)
7540 YVELW = SOLN(2)*(1/TSTEP)
7560 VMAGW = SOLN(3)*(1/TSTEP)

U
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7580 VROTW = SOLN(4)*(1/TSTEP)
7600 C
7620 IF (UTEST *EQ, 1) THEN
7640 ITEMP = COL - PCOL + (IWt1)/2
7660 JTEMP = ROW - PROW + (JW+1)/2
7680 WRITE(66t30) CORRD(ITEI PJTEMP,1),CORRD(ITEMPJTEMP,2)
7700 30 FORMAT (lXv'CENTER OF WINDOW AT ('r 95,,95''/
7720 C
7740 WRITE (66P36)
7760 36 FORMAT (//1XY'WINDOW VALUES' ,/)
7780 DO 4 K = 1PKU
7800 DO 5 J = IJW
7810 WRITE (6696) (WIND(IJvK)tI=lrIW)
7840 6 FORMAT (1XP<IW>(I4))
7860 5 CONTINUE
7880 WRITE (66p8)
7900 8 FORMAT(/
79'20 4 CONTINUE
7940 C
7960 WRITE (66P10) TIMEPXTRANIYTRANIMAGIROTIPXVELIYVELI,
7980 1VMAGIPVROTI
8000 10 FORMAT (lXvF5.4t8(3XtEl1.4)v/)
8020 WRITE (66,11)
8040 11 FORMAT(lOX.'XTRANW',8X,'YTRANW' 8XP'MAGU',IOX, 'ROTW't
8060 lOXt'XVELW'.9Xt'YVELW'.9X.'VMAOU',9X.,'VROTW')
8080 WRITE (66,12) XTRANWYTRANWMAGWROTWPXVELWPYVELWVMAGWVROTW
8100 12 FORMAT (SX?8(3XrEll.4)p/)
8120 WRITE (66,13)
8140 13 FORMAT('1')
8160 C
8180 ELSE
8200 WRITE (66,14) TIMEPXTRANIYTRANIMAGI.ROTIPXVELI.YVELI,

8220 1VMAGIYVROTI
8240 14 FORMAT(1XvF5.4i8(3XYE11.4))
8260 WRITE(66P15) XTRAN~,YTRANWMAGWROTWXVELWPYVELWVMAGWVROTW
8280 1s FORhAT(11XP8(3X#Ell.4)9/)
8300 ENDIF
8320 RETURN
8340 END
8360 C
8380 C ** *z***** ** uuug**s**ssgs g*
8400 C *:****s***s:*~****u***us***ss*s
8420 C SUBROUTINE INIT IS USED TO INITIALIZE PARAMETERS*
8440 C
9460 C
8480 SUBROUTINE INIT
8500 C
85,20 C *COMMON DECLARATIONS
8540 PARAMETER (IW=9,JW=9,KW=3, IBz3,JB:3,KB=3, ISIZE=128,JSIZE=L28)
8560 C
8!80 COMMON /WINDOW/ WIND(IW.JW.KW).CORRD(ISIZE.JSIZE.2')
8600 INTEGER WIND
8620 COMMON /ORIGIN/ I0vJO.K~oXOYO
9640 INTEGER I0tJO.KOXO.YO
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8660 COMMON /PARMS/ ROWCOLPROWPCOLNUMROWNUMCOLWTEST
8680 INTEGER ROWCOLPROWPCOLNUMROWNUMCOLWTEST
8700 COMMON /COCHGS/ XVELIYVELIVROTI,VMAGITIMETSTEP
8720 COMMON /EQU/ ALPHA(4),BETACOEFF(9,4),VECTOR(9),SOLN(4),FEED(4)
8740 INTEGER ALPHABETA
8760 C
3780 C THE PIXEL VALUE AT (COLROW) IS PUT INTO WIND(IrI,)
8800 WRITE (6,20)
8820 20 FORMAT (IX,'BEGIN WINDOW')
8840 WRITE (6,50)
8860 50 FORMAT (IX,'ROW COL')
8380 READ (5,*) ROWCOL
8900 C
8920 C THE MOTION TO BE TRACKED
8940 WRITE (6,30)
8960 30 FORMAT (IX,'INPUT:XVELIYVELIPVROTI/PIPVMAGI')
8980 READ (5,*) XVELIYVELIVROTIVMAGI
9000 C
0020 PROW = 1
9040 PCOL = 1
9060 NUMROW = 128
9080 NUMCOL = 128
9100 C
9120 XO = COL + (IW-I)/2
9140 YO = ROW + (JW-1)/2
9160 C
9180 DO 60 I=INUMCOL
9200 DO 70 J=1,NUMROW
9220 CORRD(IJ,1) = I
9240 CORRD(IJ,2) = J
9260 70 CONTINUE
9280 60 CONTINUE
9300 C
9320 TSTEP = 0.033
9340 TIME = 2*TSTEP
9360 PI = 3.14159
9380 VROTI = VROTI*PI
9400 C
9420 10 = (IW+I)/2
9440 JO = (JW+1)/2
9460 KO = (KW+1)/2
9480 C
9500 DO 10 I=I,4
9520 SOLN(I) = 0.0
9540 10 CONTINUE
9560 C
9580 FEED(I) = 1.0
9600 FEED(2) = 1.0
9620 FEED(3) = 1.0
9640 FEED(4) = 1.0
9660 C
9680 WRITE (6,40)
9700 40 FORMAT (IXP'INPUT 1 cr. TO WRITE WINDOW OR 0 cr. TO SKIP')
9720 READ (5,:) WTEST
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9740 IF (WTEST *EQ. 0) THEN
9760 WRITE (66r5) lB
9780 5 FORMAT (1Xr'WINDOW SIZE = 'lt/
9800 WRITE (66t3)
9820 3 FORMAT(1X,'TIME'v5X,'XTRANI',BX,'YTRANI',8X,'MAGI' ,10XP'ROTI'
9840 1 P1OXP'XVELI'.9X,'YVELI',9X,'VMAGI',9X, 'UROTI')
9860 WRITE (66p4)
9880 4 FORMAT(15X,'XTRANW' ,8X, 'YTRANWtJ 8X, 'MAGW' ,1OX, 'ROTU',
9900 & I0XP'XVELW',9X,'YVELW',9X,'VMAGW',9X,'VROTW',/)
9920 ENDIF
9940 C
9960 RETURN
9980 END
10000 C
1002-0 C
10040 C *s***:***~*~******ss*s*ss**s:gu
10060 C SUBROUTINE WINDOW (1) USES THE INTEGRATION RESULTS TO MOVE THE
10080 C WINDOW IN ORDER TO TRACK THE TARGET AND (2) PERFORMS THE MOTION
10100 C ON THE 1ST IMAGE USED TO GET THE WINDOW AND WRITES THE RESULT
10120 C TO UNIT = M + 15,
10140 C *$*E***************S****U**S*
10160 C
10190 SUBROUTINE WINDOW (M)
10200 c
10220 C $COMMON DECLARATIONS
10240 C
10260 PARAMETER (IW=9,JW=9,KW=3, IB=3tJB=3,KB=3yISIZE=1289JSIZE=128)
10230 C
10300 COMMON /WINDOW/ WIND(IWtJW'KW)PCORRD(ISIZEtJSIZEt2)
10320 INTEGER WIND
10340 COMMON /EOU/ ALPHA(4)tBETAtCOEFF(9,4) ,VECTOR(9) YSOLN(4)vFEED(4)
10360 INTEGER ALPHAPBETA
10380 COMMON /IMAGE/ IMAGE(ISIZErJSIZE)
10400 INTEGER*2 IMAGE
10420 COMMON /BUFFER/ BUF(IBYJBPKB)
10440 INTEGER BUF
10460 COMMON /PARMS/ ROWCOLPROUPCOLNUMROUNUMCOLWTEST
10480 INTEGER ROUCOLPROWPCOLNUMROUNUMCOLWTEST
10500 C
10520 C *LOCAL VARIABLES*
10540 LOGICAL*1 BIMAGE(ISIZE),BLINE(2*ISIZEJSIZE)
10560 CHARACrER*(ISIZE) IMAGELINE
10580 INTEGER*2 NEWIM(ISIZEYJSIZE)
10600 REAL ECOSWPESINWvXWtYW
10620 EQUIVALENCE (DIMAGEtIMAGELINE)u(BLINENEWIM)
10640 C
10660 C AFFINE TRANSFORMATION TO MOVE WINDOW
10680 C
10700 ITEMP = COL - PCOL + (IB+1)/2
10120 JTEMP = ROW - PROW + (JB+1)/2
10740 XW =CORRD(ITEMPYJTEMP91)
10760 YW = CORRD(ITEMPrJTEMPt2)
t0780 ECOSW = EXP(SOLN(3)) * COS(SOLN(4))
10800 ESINW =EXP(SOLN(3)) * SIN(SOLN(4))
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10820 C
10840 DO 10 J=INUMROW
10860 DO 20 I=INUMCOL
10880 CORRD(I,Jtl)=ECOSW*(CORRD(I,J,I)-XW)-ESINW*(CORRD(IJ,2)
10900 & -YW)+ECOSW*SOLN(1)-ESINW*SOLN(2)
10920 CORRD(I,J,2)=ESINW$(CORRD(IiJ,I)-XW)+ECOSW*(CORRD(I,J,2)
10940 I -YW)+ESINW*SOLN(1)+ECOSW*SOLN(2)
10960 CORRD(IJtl) = CORRD(I,J,1) + XW
10980 CORRD(I,J,2) = YW + CORRD(I,J,2)
11000 20 CONTINUE
11020 10 CONTINUE
11040 C
11060 C OPEN A IMAGE FILE AND FILL PIXEL VALUES INTO THE ARRAY IMAGE
11080 C
11100 DO 30 K=IKW
11120 KCOUNT = M + K + 9
11140 OPEN(UNIT=KCOUNTSTATUS='OLD',ACCESS='DIRECT',
11160 RECORDTYPE='FIXED',READONLY)
11180 C
11200 DO 80 I=IISIZE
11220 DO 90 J=IJSIZE
11240 IMAGE(IJ) = 0
11260 90 CONTINUE
11280 80 CONTINUE
11300 C
11320 DO 40 J=I,NUMROW
11340 READ (KCOUNT'J) IMAGELINE
11360 DO 50 I=1ISIZE
11330 IMAGE(IJ) = BINAGE(I) *AND. 255
11400 50 CONTINUE
11420 40 CONTINUE
11440 C
11460 C USE THE TRANSFORMATION TO TRACK; STORE THE RESULT IN NEWIM
11480 C
11500 DO 60 J=1,NUMROW
11520 DO 70 I=1,NUMCOL
11540 IF (CORRD(I,J,I) .LT. I .OR. CORRD(I,J,I) .GT. ISIZE
11560 & .OR. CORRD(I,JY2) .LT. 1 *OR. CORRD(I,J,2) GT, JSIZE)
11580 1 THEN
11600 NEWIM(IJ) = 0
11620 ELSE
11640 NEWIM(IJ) = IBILIN(CORRD(IJI),CORRD(I,J,2))
11660 ENDIF
11680 70 CONTINUE
11700 60 CONTINUE
11720 C
11740 CLOSE (UNIT=KCOUNT)
11760 C
11780 C FILL WINDOW WITH NEW PIXEL VALUES
11800 C
11820 DO 110 1=1,1W
11840 00 120 J=1,JW
,18s0 ITEMP = COL - PCOL + I
11880 JTEMP = ROW - PROW f J
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11900 WIND(I,J,K) = NEWIM(ITEMPJTEMP)
11920 120 CONTINUE
11740 110 CONTINUE
11960 C
11980 C WRITE TRACKED IMAGE INTO A FILE
12000 C
12020 IF (K .EQ. 1) THEN
12040 OPEN(UNIT=KCOUNT+15,STATUS='NEW',ACCESS='DIRECT',
12060 1 RECORDTYPE='FIXED',RECL=NUMCOL/4,BLOCKSIZE=NUMCOL)
12080 DO 130 J=INUMROW
12100 DO 140 I=INUMCOL
12120 BIMAGE(I) = BLINE(I*2-1,J)
12140 140 CONTINUE
12160 WRITE (KCOUNT+15'J)IMAGELINE
12180 130 CONTINUE
12200 CLOSE (UNIT=KCOUNT+15)
12220 ENDIF
12240 C
12260 30 CONTINUE
12280 RETURN
12300 END
12320 C
12340 C *gz***s$g1$z$*$**$$$$;$*$*$**$gZ$s*$*:g$z****$z1n**u1$s* U
12360 C $
12380 C
12400 SUBROUTINE LINEQ(A,XB,MNCC)
12420 INTEGER CC
12440 C
12460 C SOLVE AX=B. T HOLDS AN UPPER TRIANGULAR MATRIX WHILE S
12480 C IS WORKSPACE. THE METHOD FACTORS A=U$T WHERE THE COLUMNS OF
12500 C U ARE ORTHOGANAL AND T IS TRIANGULAR. THE RESULTING SYSTEM
12520 C T*X=B' IS EASILY SOLVED BY BACK SUBSTITUTION. ASSUME M
12540 C EQUATIONS AND N UNKNOWNS. ( N <= M <= 9 )
12560 C THE MATRIX OF COEFFICIENTS, A IS STORED IN THE FIRST N ROWS
12580 C AND THE FIRST M COLUMNS OF THE 9X9 A ARRAY. THE ROUTINE
12600 C BRINGS IN THE WHOLE 9X9, BUT ONLY USES A(I,1) TO A(NM)
12620 C (RECALL THAT FORTRAN STORES THE ARRAY COLUMN-WISE, BUT
12640 C ADRESSES THE ELEMENTS IN THE STANDARD ROWCOLUMN FORMAT)
12660 C NOTE: THE A ARRAY IS ALTERED DURING EXECUTION.
12680 C
12700 DIMENSION A(9,9),T(9,9),X(N),B(M)
12720 CC=1
12740 C M MUST BE <= 9, AND N<=M. CC IS A COMPLETION CODE; IF THE
12760 C SUBROUTINE EXECUTES PROPERLY CC WILL BE RESET TO 0 BEFORE RETURN
12780 DO 40 I=I,N
12800 IF (I.EQ.1) GO TO 25
12820 DO 20 J=1,M
12840 3=0
12860 Ii=I-I
12880 00 10 K=I1I
0900 IF (T(KK) .LT. .0001) GO TO 5000
12920 S=S+A(JK)$T(K,I)/T(KK)
12940 10 CONTINUE
i2960 A(JI)ZA(JI)-S
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12980 20 CONTINUE
13000 25 DO 40 K=I,N
13020 S=0
130400S 30 J=IM
13060 S=S+A(JI)*A(JK)
13080 30 CONTINUE
13100 T(IK)=S
13120 40 CONTINUE
13140 DO 60 I=I,N
13160 S=O
13180 DO 50 J=Im
13200 S=S+A(JI)*B(J)
13220 50 CONTINUE
13240 X(I)=S
13260 60 CONTINUE
13280 DO 80 I=1,N
13300 II=N+I-I
13320 IF (II.EON) GO TO 75
13340 12=11+l
13360 DO 70 J=12,N
13380 X(I1)=X(II)-T(IIJ)*X(J)
13400 70 CONTINUE
13420 IF (T(II,I1).LT..0001) GO TO 5000
13440 75 X(I1)=X(I1)/T(II,I1)
13460 80 CONTINUE
13480 CC=O
13500 RETURN
13520 5000 CC=-l
13540 C A COMPLETION CODE OF -1 INDICATES THAT THE SUBROUTINE
13560 C TRIED TO DIVIDE BY 0.
13580 RETURN
13600 END
13620 C
13640 C I
13660 C $
13680 C
13700 INTEGER FUNCTION IBILIN*2(XXYY)
13720 C
13740 C THIS FUNCTION RECEIVES 2 REAL COORDINATES (PRODUCED BY THE TRANS-
13760 C FORMATION IN THE CALLING ROUTINE) WHICH ARE COORDINATES RELATIVE
13780 C TO THE OLD IMAGE. SINCE THE COORDINATES ARE REAL VALUED,
13800 C THE POSITION WILL NOT BE ON A PARTICULAR PIXEL, BUT RATHER AMONG
13820 C 4. THIS FUNCTION RETURNS A BILINEAR INTERPOLATION FOR THE 4
13840 C SURROUNDING POINTS.
13860 C
13380 PARAMETER (ISIZE=I28,JSIZE=128)
13900 COMMON /IMAGE/ IMAGE(ISIZEJSIZE)
13920 INTEGER*2 IMAGE
13940 REAL H,V,HTEMPIHTEMP2,VTEMP
13960 C
13?80 MXI=MAX(0,INT(XX))
14000 MX2=MINISIZEINT(XX)+I)
1402 ?IYI=MAX(0,INT(YY))
14040 MY2=MIN(JSIZEINT(YY)+)
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14060 H=XX-MX1
14080 '-if
14130

14140 MTEMlP2=NEIMAGE(j1X2,l1Y2)+(I.0-H)*ThAGE(MX,tiY2)
14160 VTEMP =V*HTEMtP2+(1.0-V)SHTE~iPI
14180 1BILIN=INtNT(VTEMP)
14200 RETURN
14220 END
14240 C
14260 C
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ADAPT'VE PATTERN MATCHING USING CONTROL THEORY ON LIE GROUPS*

Thomas G. Newman and Leopold Zlobec
Taxas Tech University

Lubbock, Texas

Abstract

A method is given for matching a subpattern of a two-dimensional
image against a stored prototype, where the latter is defined on a
window whose position and shape is determined by the action of a Lie
group of transformations. The method involves the construction of a
path in the control group along which the matching error decreases
to a local minimum.

I. INTROOUCTION how two planar images could be matched un-

A -roblem of' classical inteerest in pattern der arbitrary affine transformation of the

reconition is that of determining the plane, if a match were at all possible. in
addition to affine transformations, an a!-

presence or absence of a particular sub-

pattern or subpattern class. In the anal- lowance was also made for dilation of in-

ysis of two-dimensional imagery this can tensity scale such as that which results

from under or over exposure of film withintake t-he for-m of detection of corners and

edges or the location of a specific sil- latitude limits. The results cited, how-
ever, are of little use in matching subpat-houette. M"ore particularly, we may be in-

terested in obtaining an exact match of a terns, since the algorithms are highly sen-

specific portion of the image to a sub- sitive to the background context. Never-

image, often a prototype, which may appear heless, the utility of a group theoretic

in an arbitrary manner, varying in size, approach to pattern matching was clearly

location and orientation. This is the demonstrated.

problem which is herein addressed. In the following we present a method for

A related question was considered by Dir- performing a local search for an imbedded

ilten and Newman [31 where it was shown subpattern of a two-dimensional image. The

*This research was supported by the Army Research Office, Contract
OAAG29-8C-C-0087 and by the Office of Naval Research, Contract
N0014-76-C-1136.
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method is one involving adaptive control for 1,2...,n.

of a retina which seeks the desired sub- The differential onerators so defined are

pattern by evolving along a curve in the to be considered as linear operators on the

space of parameters in a direction which space of analytic functions on C, or, nore

assures improvement in the goodness of generally, on the space of differentiable

-. functions on G. The Lie algebra of : is

2. BACKGROUND simply the n-dimensional vector space con-

Let G be a Lie group of transformation on sisting of all 'inear combinations of these

an analytic manifold X. Suppose G has di- operators, and will be denoted by L(G) [2}.

nension n while M has dimension m. Let x The Lie algebra of G may also be defined in

and y denote the coordinates of elements f terms of its actions on the manifold M.

and g in G, respectively, in a patch con- Analogous to (2.3) we define

taining the identity element e of G. Also, 3K I

let p denote coordinates of an element u Q~ j yP) (yp) ye (2.5)

of M in some patch in M. We may then ex- for a - 1,2,...,m and j 1,2 - ... n.Fin-

press the coordinates z of the product ally, as in (2.4) above we set

h - fg and the coordinates q of the ele- m

vne -v qu, relative to suitable patches, X. = Q.I - " (2.6)

by means of analytic functions

z = J(x,y) (2.1) The operators Xn, X ..... X apply to

q - K(y,p) (2.2) functions defined on M and span a Lie alge-
bra isomorphic to L(G).

K and J are vector-valued, 
having values

in n-dimensional space an or c' and m- The following result from [41 will be used

dimensional space R
m or Cm. Hereafter we later, and is stated for reference:

shall assume that these underlying spaces Theorem 2.1. Let f: . - R be differenti-

are real. We denote the ith component of albe and define F: G - M - R, in terms of
J by Ji and the jth component of K by K coordinates, by

2.'P -j., )) 2 7
In order to define the Lie algebra of G we F(x,p) * f(K(x,p)). (2.7)

first introduce real-valued maps on G by Then for each - 1.2. we have
3J.X'r T i. (2.3)

P; ) W (xyi (2.3) =XF 23
-- ( e, . Let us consider a curve t - q(t) in G sat-

where i and ) each range from I to n. The isfying g(0) - e. Zn terms of a coordinate

cross-section P., which consists of the patch at a, g(t) may be described by a
j, ~npi as x ranges from I to n, and j is fix- curve x(t) in R satisfying x(O) - 0. We

ed, may be thought of as a vector field in shall consider the case in which x(t) is

Rn
, 

Such a vector field attaches to a given as the solution of an evolution equa-

point x the vector P. (x). As such, P.1, tion of the form

P-n form a basis for the tangent n

space at the point x [1,21. The infinite- x(t) - 7 j_(t)p.i(x(t)), x(0l - 0,(2.9)

simal transformations of C may now be de- where P.1 ... 2.n are cross-sections of the

fined by %rray of functions given by .2.3), and

X n (t) . ) are suitable control func-
* - (x) '. , 2.4) i ... a b o

i.. . . ..tons.
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.u;w !et o denote the coordinates of a Thus, v(x) F - 7' ,1., where x is re-

point u in some coordinate patch. For a garded as a parameter.
differentiable map !: :4 - R we may define The following is a well-known property of

H: R -R by setting the Lie group G [2):

H(t,p) - f(g(t)u). (2.10)
We recognize that H(tp) - F(x(t},p) where Lemma 1. In order that the differentia!

F is the extension of f to G . as in d (x) - 0 at a point x 6 G, it is necessary

Theorem 2.1 above. From the point of view and sufficient that each X =(x) - where

of application, if we regard f: M - R as XIX 2 ,. ',X n are the generators of L(G)

an image, then H(t,p) represents the mov- given by (2.4).

inq image obtained by translation due to By direct calculation, we obtain Xi (x) =
the curve g(t). Also from [4), we have "(F xP) - V(Pi)X.F xpidp. n practice,

Theorem 2.2. in the context above, this expression is difficult to compute
S(2.11) numerically, due to the presence of the

term XLF, which cannot be computed directly

3. THE CONTROL MODEL from observed data. However, by Theorem
(2.1) we have XiF - XiF, and the latter canBy an .aq we mean a nap f., H - R, where ibe calculated from a single value of x.

the value t(p) at a point p e M represents
the gray value at the picture element at Suppose now that a curve in G is given by

p. In practice, values are observed on a coordinates x(t) obtained as a solution of

subset W 4, which we regard as a window Equation (2.9). We seek to find (t) *

which may be translated by the action of G ((t)..... n(t)) so that 4(t) = '(xit)i

on M. Thus, upon translation by an ale- decreases to a minimum value. Defining

ment x Q G, the value observed at p 6 W is - F(xitip) we obtain,

given by F(x,p - ftIC x,p)), as in (2.7) Lit) - .(H(t,p) - V(p))- (t,p)dp (3.2)

above. I

which, by application of Theorem (2.2), be-
We consider a given prototype sub-image V comes
defined on the window W, V: W - R. The
problem then is to determine x 6 G such 'n(t) = . (t)i(H(z,p) - V(p))X 11(tp)dp

that F(x,p) - V(p) for all p 6 W, or deter- L-i

mine that no such x exists. As a matter n (3.3)

of practice, we seek x 6 G which minimizes = . (t)<H - VX1H>

the obiective function Upon observing that <H - V,X!H>
i(x = (Fixp) - V(p))

2
dp, 3.1) < - V,X.F> . XI at x X(t), we deduce:

where dp represents a volume element and Theorem 3.1. If k(t) is chosen so that
the integral is over the window W, which sgnA(t) - - sgn <H - V,X!H>, we have
is assumed to be of bounded volume. (t) e 0 for all t, with equality at t - t-

In ;eneral, for any two functions f1 ,f,: if and only if dY - 0 at x - x(ta).
W - M we define Among the class of bounded controls,

<fl'-" J f f2dp and - t) 1 1, we see that the rate of de-
W crease of (ti) s maximized by the zhoice

, ,1> 2 t - son <H - '! H , (3.4)-l <f1 ,f1 > " I.' '
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r - ,2, ... n. Of course, ocher stra- In all -ases, the final results were quice

tegies can be formulated. including steep- reasonable, even n those cases where the

est -escent, and some methods using un- prototype was absent. In the latter cases,

oounded controls. By proceeding along the search terminated with a "best" natch,

trajectories defined by the solution of with a cormensurately large final error.

,2.9) with '(t) ;iven by (3.4), we ap- As an example, Figure 1 shows that starting
proach a critical point of m jL... d ~ position for a noisy image containing two
Since maxima and saddle points are Ufl-* objects. The prototype is indicated by the

stable nder perturbation, in practice central silhouette, while the true target
this extreme point will always be a mini- is shifted upward. slightly to the right

MVAM., and is reduced in size. A false target

4. SIMULATION RESULTS overlaps the lcwer right corner of the pro-

The results discussed in the previous sac- totype.

tion have been implemented by a discrete

algorithm and tested on simulated data (51.

A digitized two-dimensional image was : :.. ,.
first generated in the form of a large
two-dimensional array, and the prototype ,

was generated in a 20 - 20 window array. l:',j, 1 9-,'...
I.. . , . . . . .

The image space was assumed to be subject .

to translation, magnification and rotation, .11-.
giving rise to a four parameter Lie group .... .
of transformations in the plan. . ..:.. .,......;
A number of cases were considered, includ- .........

ing some involvinq multiple (false) tar-

gets and others in which the prototype was Fig. 1. Initial Window Position.
absent from the image being searched. In The termination conditions are shown in

some cases the image was contaminated by Figure 2, where the true target was located

5 random noise. In all cases the search after 49 steps. All parameters were cor-

was started with overlap between the pro- rect with the exception of magnx!ication,
totype target and the image target. which was about 5 too large. Smaller val-

The differential equation (2.9) was solved ues of magnification, however, increase the

by means of a Runge-Kutta fourth order error due to the presence of the false ob-
method, with a dynamic step size, which ject, which is barely touching the bottom

was increased as necessary to accelerate edge of the window in Figure 2.
convergence and decreased as necessary to

maintain stability. Integration was re-

placed oy sumeation, although we conjec-
ture that convergence could have been ac-
celerated by the use of a trapezoid rule.

3enerally, search times ranged from 30 to
50 steps, with the longer search times
prevailing for the more difficult cases.
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I * .. ' . . . .. ..

. . - . ..

Fig. 2. .errnal Window Position.
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